
Defense AT&L: November–December 2014	 22

	 23	 Defense AT&L: November–December 2014

The Path to Software
Cost Control

Dr. James R. Eckardt n Timothy L. Davis n Richard A. Stern
Dr. Cindy S. Wong n Richard K. Marymee n Arde L. Bedjanian

Bedjanian is founder and president of GreenDart Inc., a San Pedro, Calif., firm focused on identifying software issues early in development
cycles. Davis, Stern, Eckardt, Wong and Marymee are systems engineers at GreenDart.

Many programs risk cost growth and schedule delays because of soft-
ware development issues. In the 2010 Government Accountability Of-
fice (GAO) defense acquisition report, Assessments of Selected Weapon
Programs, the programs with count growth in significant source line
of code (SLOC) since development startup experienced accelerated

cost increases and excessive schedule delays relative to other programs. The
report asserted that collecting, tracking and containing software defects in the
phase where they occur is an excellent cost-control management practice. Pro-
grams surveyed indicated that an average of 31 percent of defects corrected were
detected after the development phase in which they were inserted. Capturing
software defects in phase is critical because detecting defects out of phase results
in expensive program rework.

Real Cost Impact
Software defects are so prevalent and detrimental that they cost the U.S. economy an estimated $59.5 billion
annually, or about 0.6 percent of the gross domestic product, according to a 2002 study commissioned by the
Department of Commerce’s National Institute of Standards and Technology (NIST). A more recent Cambridge
University study reported that the global cost of debugging software has risen to $312 billion annually. The
research found that, on average, software developers spend 50 percent of their programming time detecting
and fixing defects.

http://web.archive.org/web/20090610052743/http:/www.doc.gov/
http://web.archive.org/web/20090610052743/http:/www.nist.gov/

Defense AT&L: November–December 2014	 24

Some Recognized Challenges
Defect-removal efforts substantially compound several paral-
lel factors that also result in significant program cost growth:

•	 Decreased Product Life Expectancy—Due to technology
advances and rapid product evolution, the life expectancy
of software products has decreased dramatically over the
past several years.

•	 Increased Program Complexity—The size of software prod-
ucts no longer is measured in thousands of lines of code
but in millions.

•	 Optimistic Software Reuse Plans—Many programs pro-
pose aggressive software reuse in order to lower the pro-
posed cost of the software without reducing the estimated
software size.

•	 Requirements Growth—A current trend toward “late bind-
ing” along with the revision of customer requirements dur-
ing development risks an introduction of an unintended re-
quirements creep. This disrupts predevelopment cost and
schedule estimates.

•	 Curtailed Testing—As development progresses, many
programs experience a cost growth and schedule slip that
result in a simplified “back-end” testing agenda to recover
some schedule. This approach emphasizes test for success
(verifying all requirements are met) and limits test for failure
(the search for critical flaws).

These factors place early pressure on developers to main-
tain schedule commitments, leading to increased reliance on
final product testing for defect detection. In the commercial
realm, the increased use of “beta releases” is a symptom of
this. However, studies have shown that optimal schedule and
cost outcomes actually occur with rigorous early detection
and removal of defects. This paper presents a means to move
toward that optimum.

The Software Development Life Cycles (SDLC) adheres to crit-
ical phases that are essential for product development. These
phases include planning, analysis, design and implementation
and may include concurrent system evaluation, information
gathering and feasibility studies. Traditional waterfall SDLC
may be replaced by variations of the Agile/SCRUM (the
later involves multiple small development teams) develop-
ment methodology, due in part to today’s increased program
complexity and module count. No matter which process is
implemented, defect insertion can occur during the correction
of the identified defect and will additionally impact program
cost and schedule.

Typical Defects and Frequency
Reference data indicate that about 40 percent of defects
originate in the requirements definition phase (with design
accounting for 10 percent, code for 45 percent, and test for

Table 1. Typical Software Development Life Cycles (SDLC) Phase-Related Defects
SDLC Phase Typical Defect

Requirements
Definition

•	 Requirements, and associated data, are not traced correctly, are missing or aren’t stated clearly.
•	 Software requirements specifications, interface requirements specifications, test approaches/data,

algorithms are incorrect and/or inconsistent.
•	 Inadequate and/or incorrect user interface as input from user groups.

Design •	 Incorrect or inconsistent interface traceability between documents.
•	 Requirements are not satisfied by the software design.
•	 Critical functions and/or algorithms have been identified but not correctly described.
•	 Design risk and risk mitigations have been incorrectly identified.

Code •	 Incomplete source code, unused or unreachable code.
•	 Incorporation of “buggy” reuse code and ineffective integration of commercial off-the-shelf (COTS) and

government-furnished equipment (GFE) software.
•	 Failure to track code corrections, uncompleted code and code-completion schedules.
•	 Failure to systematically identify critical and hazardous components of the code for additional risk

management.
•	 Inadequate/incorrect/misleading or missing comments in the source code.
•	 Standards and project-related design/requirements/coding standards not followed.

Test •	 Failure to track code corrections, incomplete code and code-completion testing schedules.
•	 Failure to ensure that hazardous and otherwise critical components of the code are thoroughly tested.
•	 Limited test data used in component development and testing.
•	 Incomplete developer test plans, test procedures or test execution results.
•	 Limited testing and review of results do not adequately demonstrate that the software supports mission

requirements and capabilities.

http://en.wikipedia.org/wiki/Planning
http://en.wikipedia.org/wiki/Analysis
http://en.wikipedia.org/wiki/Design
http://en.wikipedia.org/wiki/Implementation

	 25	 Defense AT&L: November–December 2014

5 percent). Of these defects, the requirements phase only
detects and corrects about 15 percent (design corrects 10
percent, code 45 percent and test 30 percent). Table 1 de-
picts a list of typical phase-related defects independent of
SDLC process model used.

Cost of Latent (Out-of-Phase) Defects
Defects not removed in their respective creation phase are
subject to a substantial—and escalating—repair cost penalty
when corrected later. For example, a requirement defect de-
tected in operations resulted in a cost 368 times greater than
it should have been, according to NASA’s study of return on
investment (ROI) for software independent verification and
validation (IV&V). Delayed defect correction increases rework
(cost/schedule impact) required to correct the defect. Delayed
defect correction typically involves making numerous changes
to both the original and now related software, to intermediate
work products (such as test procedures) and more extensive re-
gression testing. More change activity also increases the oppor-
tunity to introduce new defects during the delayed corrections.

Figure 1, Latent Defect Cost Escalation, compiled from this
NASA study illustrates the relative cost escalation of correct-
ing an out-of-phase defect. In this figure, an in-phase corrected
defect receives no cost impact but, if the detection and correc-
tion occur in a subsequent phase, the costs increase exponen-
tially. This cost penalty creates a great incentive to identify and
correct the defect in phase.

According to the 2002
NIST study, not all de-
fects can be corrected in
a cost-effective time span.
However, more than a third
of these costs, or an esti-
mated $22.2 billion, could
be eliminated by a more
rigorous software assess-
ment process that would
enable earlier and more
effective detection and cor-
rection of software defects.

Addressing Develop-
mental Program
Latent Defects
Major cost savings at the
total program level are

60

50

40

30

20

10

0

Co
st

 Im
pa

ct

Defect Detection/Correction Phase

Requirements Design Code Test

Requirements
Design
Code

Figure 1. Latent Defect Cost Escalation

achievable by systematically containing most software defects
in or near the phases where they are introduced. Detecting la-
tent defects as early as possible is best, specifically if corrected
in the phase where they are introduced rather than detected
later. Current defect-detection strategies include: (1) indepen-
dent testing; (2) developer verification and validation (V&V);
and (3) IV&V. As will be shown, only one of these approaches
is effective for identifying potential latent defects within the
phase where the defect is introduced.

Independent Tests to Identify System Defects
Independent testing brings significant value to the final ac-
ceptance of software systems. These tests typically are ex-
ecuted on completed systems by an organization (or separate
company) independent of the development effort—which
increases system assessment objectivity. The problem with
addressing latent defect costs using this approach is tim-
ing—the testing occurs much too late in the SDLC to reduce
latent defect impacts. Therefore, independent testing is not a
mechanism for reducing latent defect costs.

Why an “Independent” Effort Is More Effective
Development organizations address V&V in two ways: (1)
employing a product review process at the end of each phase
of the development by the developers themselves; and (2)
using a separate team to V&V the developed products. While
developer V&V may encompass many forms of development

... More than a third of these costs ... could be
eliminated by a more rigorous software assessment

process that enables earlier and more effective
detection and correction of software defects.

Defense AT&L: November–December 2014	 26

testing, the developer’s primary focus is requirements sell-off
“test for success” verification activities. However, a signifi-
cant portion of the defects identified in Table 1 are not detect-
able by this strategy. To capture these types of defects, the
approach must include a “test for failure” focus (e.g., limit
checking, off-nominal condition analysis, etc.). These are not
typical requirements sell-off strategies and, therefore, are not
activities performed by the developer’s V&V team. They are,
however, key strategies of an effective IV&V effort.

Table 2. IV&V Tasks to Eliminate Latent Defects

Requirements
Verification

•	 Validate that the requirements are complete, concise, understandable, testable and that they satisfy
the user’s needs.

•	 Verify that the developer requirements are traced accurately to software components and back to
the system and interface requirements.

•	 Evaluate risks associated with the requirements and with the concepts and plans for testing.
•	 Review software requirements specifications, higher-level requirements and interface requirements

specifications for consistency.
•	 Ensure that test approaches and test data are correct and consistent.
•	 Ensure algorithms are consistent with requirements and test planning and that the algorithm test

plans are sufficient.

Design
Verification

•	 Verify that the interfaces are correct and consistent in all documents.
•	 Validate that the requirements are satisfactorily implemented in the design and that the design

satisfies all of the requirements.
•	 Review the reuse code and the reuse plan to ensure the feasibility of reuse as planned.
•	 Verify that the critical functions and algorithms have been identified and prototyped and are ad-

dressed in the design.
•	 Ensure that the developers have correctly identified design risk and security issues and appropriate

mitigations.
•	 Ensure that test procedures and test data are correct and consistent.

Code
Verification

•	 Analyze supplied code with code analysis tool(s), identifying any code debug/violations.
•	 Track code corrections, incomplete code and code completion schedules.
•	 Ensure that critical and hazardous components of the code are identified.
•	 Monitor code development performing design through code trace analysis.
•	 Evaluate unit test artifacts for completeness, addressing relevant requirements and off-nominal

testing.

Validation

•	 Validate that test results address the user’s needs and system requirements. Validate test results
against expected results in test plans.

•	 Identify and track retest of corrections, incomplete testing, and retest/regression test completion
schedules.

•	 If developer cost and/or schedule overruns occur, identify and evaluate mitigation options.

Figure 2. IV&V Process Tied to SDLC Phases

Requirements Design Code
 Integration Delivery & Test

Requirements Design Code Validation Verification Verification Verification

Development

IV&V

Reducing the Latent Defect Impact
IV&V is a software assessment technique that integrates
with the developer’s process to capture, assess and report
on defects in developed products. A sample IV&V program,
linked to developer activities, shown in Figure 2, integrates the
developer’s waterfall SDLC process with IV&V assessments
and feedback loop responses. The outputs for each developer
phase are assessed, and feedback (e.g., identified defects) is
provided to the development team in phase. IV&V maximizes

	 27	 Defense AT&L: November–December 2014

development insight, identifies weaknesses, assesses failure
conditions and uncovers defects as they are introduced into
the system—thereby reducing the potential for latent defect
propagation into later phases.

Other nonwaterfall developer processes (e.g., Agile, etc.) are
also accommodated by an IV&V integration strategy.

The application of IV&V is unique to each development ef-
fort, based on such factors as customer’s priorities (where to
focus), developer strategy, developer processes and products
and the application of IV&V tools unique to the particular
development effort. Typical IV&V tasks include those listed
in Table 2. When the tasks referenced in Table 2 are exe-
cuted successfully, critical defect detections are accelerated,
thereby saving program costs through minimized rework,
reduced development schedule and decreased operational
maintenance costs.

Identifying defects early and, hence, saving program costs
requires an investment in IV&V tasking. So we come to the
real question: “Is the price of the IV&V effort justified by the
program cost savings?”

IV&V Return on Investment
In 2012, GreenDart, along with the NASA IV&V Facility in
West Virginia, conducted a study into the long-term effects
of IV&V on program development costs. Based upon the
NASA-provided development and IV&V defect-identification
information for 31 programs, the paper concluded the ROI for
IV&V ranged from a conservative 85 percent to a maximum
294 percent above the cost of performing the IV&V.

Therefore, an investment in IV&V returns at least 85 percent
program savings beyond the cost of the IV&V effort. In the
most extreme cases, IV&V returned 294 percent program
savings. In short, the investment in IV&V is justified.

Computed IV&V Cost
Savings
The example in Figure 4 illustrates
the impact of including IV&V in a
software program’s development.
The results of the GreenDart-NASA
and NASA IV&V ROI studies show
that, for a program with an initial
development cost of $90 million,
latent defects are estimated to raise
the project’s actual cost to $115 mil-
lion. The customer can reduce some
of this cost by adding IV&V. Using
the conservative ROI of 85 percent,
the following calculation shows that
$6 million spent on IV&V reduces
the cost of latent errors by about
$11 million:

($6 million IV&V) X 1.85 = $11 million latent defect savings.

Subtracting the cost of IV&V from this gives a software de-
velopment savings (excluding schedule savings) of:

$11 million – $6 million = $5 million net savings.

It is important to note the final program costs are still in
excess of the proposed $90 million price:

TOTAL COST: $90 million + $25 million (latent defects) – $11
million (latent defect savings) + $6 million (IV&V costs) =
$110 million.

Additional program measures must be employed to sustain a
$90 million cost profile (reduce program requirements, etc.).

Conclusion
Many factors contribute to software development cost over-
runs. One major cost impact is latent defects. Significant
study results, presented in this paper, identify the latent de-
fect cost impacts and the positive cost savings of an effective
IV&V program.	

The authors can be contacted through arde.bedjanian@greendart.aero.

Figure 3. IV&V Return

* Return on investment, excluding investment costs

85% IV&V ROI* 294%

Conservative Extreme

$120

$115

$110

$105

$100

$95

$90

$85

$80

M
ill

io
ns

Current Program Program Costs
 Costs w/Applied IV&V

IV&V Costs
Latent Defect Costs
Current Costs

Figure 4. Anticipated IV&V Results

