
Defense AT&L: July-August 2016 48

Crash Course
for IT Newbies

Some Have Automated
Information Systems
Thrust Upon Them

Oliver Easterday

 49 Defense AT&L: July-August 2016

Easterday is deputy branch chief of the Sustainment Branch at the Air Operations Center, U.S.
Air Force C2 Requirements Division, Headquarters Air Combat Command, in Hampton, Virginia.
He is an Air Force developmental engineer with 7 years of experience in turbine engine Science
and Testing development and 4 years in depot sustainment of airframe line replaceable units.

C ongratulations! Since you wrote code in the past,
you’re now designated as a software program man
ager for automated information systems (AISs)
and information technology (IT). Don’t forget, you
developed embedded digital engine control code
or perhaps published vehicle dynamics modeling
software, and so human resources now deems you
as “intheknow” about all matters IT, AIS and/
or Defense Business Systems (DBS) technology.
You have now been assigned to start managing
one of the Department of Defense (DoD) IT/AIS
programs somewhere in the system’s engineering
process—perhaps in requirements or functional
analysis and allocation or in synthesis.

During the 1990s’ dot.com boom, and continuing in today’s “postpersonal com
puter era,” the DoD has had trouble retaining cyber experts due to the lure of
the private sector. Since losses are unlikely to be stanched anytime soon, a great
deal of technically savvy, but not ITspecialized, folks are being shunted into IT/
AIS/DBS program management. This happens because the domain of science
and technology (S&T), which includes AIS/IT, is not well understood by many
decision makers. “The needs of the Service” prevail, which raises the question
of what hardwarecentric acquisitions experts need to unlearn to avoid unwit
tingly injecting cost, schedule or capability slippage into their programs. Well,
it’s time to learn quickly that AIS/IT/DBS and software have some important
fundamental differences where your experience can lead you astray. So what are
the top things you need to unlearn? Here are some lessons learned the hard way:

n In scheduling out your program, realize software tech stateoftheart is
blazingly fastpaced. For example, one generation of gas turbine technology
development encompasses almost 10 generations of software development
and three to four generations of AIS/IT hardware. Fourthgeneration fighters
like the F16 and F15 have been around for 40 years and finally were eclipsed
about a decade ago. In that same period, IT hardware evolved from minicom

Defense AT&L: July-August 2016 50

puters (PDP8), through 8 to 64bit personal computers,
singlecore to eightcore, and onward to the handheld de
vice. When your system is being designed, keep a wary eye
on not only the hardware obsolescence but also that of the
software components. Press hard for mitigation strategies
and a loosely coupled architecture. Remember when that
F16 fleet was just nearing initial operating capability back
in the early 1980s? How much luck will you have opening
on today’s nonclassified network computer the Fielding Plan
that was written in Word Perfect for DOS v5.0? Similarly, will
your missioncritical database migrate across the iron to new
operating systems? Be a futurist and think through on what
data standards for exchange, formatting and transmission
this future event will rely? Get familiar with the Joint Capa
bilities Integration and Development System ITBox process
if you’re working requirements.

n Recognize that software configuration management is
perhaps even more critical than that for hardware systems.
There is a compulsion to keep tweaking code, thereby suc
cumbing to requirements creep and “gold plating” with the
attendant risk of completely losing configuration control.
This is due to the perceived malleability of code. The key
word here is “perceived,” because tracking software changes
and their introduction of secondorder effects can be more
tedious than actually making the changes. It is perhaps tell
ing that Linus Torvalds, founder of the Linux operating sys
tem, seems to have felt that his greater contribution was the
source version control system Git, which was developed to
track versions of and allow scaling up his first contribution. It
is also revealing that the Capability Maturity Model Integra
tion concentrates more on software management than on
the software product itself.

When costing unit production costs in Engineering, Manu
facturing and Design, it is best to dump your hardware
centric thinking. Once code is written, debugged, passed
through Developmental and Operational testing and the
first compact disc is pressed, the unit cost to scale up is
minuscule. The rare exception is software components that
are commercialoffthe shelf (COTS) items for which per
processor and/or annual licensing, and/or software as a
service costs may apply. By the way, direct licensing costs
and avoidance of the recurring management burden to deal
with them, not to mention bakedin data rights, are excel
lent reasons to explore the 2009 DoD Chief Information
Officer memorandum on (free and) open source software
to be deemed a commercially viable industry competitor.
Know that hardware components are nearly always COTS
and that a full technical data package may be hard to source.
You may be further constrained by DoD IT equipment and
software enterprise buys for many of your components.
And while grousing about this loss of agility, admit that it
does have an upside, such as leveraging enterprise bulk
buys and helping to ensure parts traceability back to the
foundry (per Open Trusted Technology Provider Standard
of the International Organization for Standardization and

the International Electrotechnical Commission). The latter
benefit is not to be underestimated in this age of pressing
cybersecurity concerns.

n To comply with security, safety and privacy imperatives
for Command, Control, Communications, Computers and In
telligence systems, weapon systems, and DBS, respectively,
in this post StuxNet world, the aforementioned supply chain
integrity is important for software, firmware and hardware.
It’s not just Windows 10 being the “bad boy” phoning home as
mentioned in the lay press; Cisco routers have been found with
“backdoor” code in their firmware that presents potential op
portunities for espionage, or worse, sabotage. As a noncyber
acquisitions subjectmatter expert, recognize that if it’s on the
DoD Information Network—and even if it’s not—but merely
executes binary code (e.g., “pushes 1’s and 0’s”), that, by defi
nition, it is not behind the base fence but is out there in the
public square and vulnerable to attack. From Day One of your
program’s architecting within DoD Architecture Framework
Version 2, cybersecurity needs to be baked into your design
and not bolted on. In a similar vein, netcentricity and utiliza
tion of open standards are critical capabilities and provide a
major hedge against obsolescence. So while at, dust off that
copy of DoD Instruction 5000.02 (Operation of the Defense
Acquisition System) and give it another read through; this time
dwell heavily on Enclosures 11 and 12, which are focused on
pressing topics in defense software systems acquisition.

n Unlike hardware components (gears, pistons and bear
ings), defense information and software systems do not fail on
a Weibull or “Bathtub” curve. Outside of a select few compo
nents, like muffin fans, hard disk drive bearings and switching
power supply transistors, bits and bytes do not wear out with
duty cycling over their service life. Software stack compo
nents do undergo a highvelocity of capability upgrades and
bug fixes, thanks yet again to that malleable nature of soft
ware. Data exchange standards evolve, application program
ming interfaces morph, and portions of the software stack
get patched and modernized and so introduce second and
thirdorder changes. This leads to the fifth point and that is …

n Recognize that data rights are as critical, if not even more
so, than protected rights in hardware systems. Reverse engi
neering by software decompilation often is prohibited by End
User License Agreements (EULAs), is a more arcane skill
set, and often yields cryptic results. Know that the ultimate
technical documentation in the software world includes, but
is not limited to, wellcommented and structured code in
a vendorneutral language like ANSI C, Fortran77 (as op
posed to, say, VBasic or Oracle Java). Recognize that the
whole system stack, from the bare metal hardware up to your
enduser application, may impact your system’s reliability
and maintainability, even its ability to function. It does no
good to have a vendor write a VBAbased solution when your
infrastructure is to be run on a Portable Operating System
Interfacecompliant operating system like Linux. Given the
massively interconnected, constant operation of many DoD

 51 Defense AT&L: July-August 2016

softwareintensive and DBS systems, interface control (now
central to your form, fit, function and interface [F3I] thinking)
to standards are paramount, leverage them!

Now your arrival from the hardwarecentric world does not to
tally disadvantage you; you bring some humility into software
systems acquisition with that general lack of knowledge and
therefore lack of institutional inertia. You are primed to foresee
things those who have grown up within the AIS/IT world often
totally miss or assume away:

First, unlike your IT brethren, you realize software often is the
long pole in the tent for major systems schedule and technical
risk; you may well have directly experienced this in previous ten
ure. I certainly did: Unlike many bornintheDoD program man
agers, I was a performerintegrator. In the late 1990s, the Office
of Naval Research commissioned a deepocean intervention
robotic submarine. The basic hardware of the vehicle—ballast,
pressure vessels, sensors, fairing, thrusters, power distribution
and major computing systems hardware, among other things—
were all ready within 2 years of program kickoff. But realizing all
the proposed capabilities in the software portion of this effort
(SAUVIM) took yet another 3 to 4 years.

Second, your AIS/IT brethren often lack configuration man
agement discipline, but you are sold on it. Let’s face it, it’s hard
to change things around once you’ve “cut metal,” and there is
much lead time in sourcing extra material, tooling and skilled
manpower. Meanwhile, the software developer’s lexicon is
salted with “sprints,” “scrums,” “jams” and “rapid spirals”; this
is indicative of a Red Bullfueled, Wild West mentality. And
while it may lead to the next killer application like Angry Birds
or Facebook, it can also doom a project for which the stakes
on configuration are a little higher due to much more mas
sive integration requirements, not to mention differing conse
quences for failure. Know that software program complexity
does not scale linearly with project size; figure it to be more
exponential in nature.

Third, you possess a holistic lifecycle view of programs from
the outset since you come from a world where systems and
components wear out, and so you already think in terms of
bathtub curves, ancillary equipment, facilities, maintenance
documentation and spares provisioning—perhaps because
items are more tangible. Software program managers often
neglect to plan provisioning for compilers, development environ
ments, documentation and longterm interoperability; you can
help save them from neglecting these lifecycle issues. While
ITpedigreed folks are accustomed to everything being “COTS
onawarranty,” you can see beyond this paradigm and are not
blind to other options with their lifecycle cost implications. Your
IT brethren may blindly accept yearly software licensing burdens
as “the cost of doing business.” Your hardwon hardware experi
ence may see a more optimal solution. Is the best plan buying
governmentofftheshelf with wellcommented code or should
you look at COTS code, or even a free open source software
([F]OSS)based solution? Is the 3year warranted blade server

iron inhouse running GOTS software truly the best solution or
would sourcing an accredited infrastructure or platformasa
service (IaaS, PaaS) contract better meet the requirements with
enhanced capabilities and feature a cheaper life cycle to boot?

Continue to assert your data rights with vigor as in this sys
tems realm they are even more at risk due to your colleague’s
easy acquiescence to “it’s always done this way” (a corollary of
“You can’t go wrong buying Microsoft/Oracle/Novell/etc.!”),
the rarity of skill needed to reverse engineer compiled codes,
and the statutory hooks that COTS software vendors load into
their EULAs.

IT folks have a culture of doing it inhouse, as a material sys
tems expert that you know to engage industry and academia
early and often to keep tabs on the stateoftheart and best
practices. And for this fastmoving area, do not skip engaging
these folks for the informal market survey and the more formal
analysis of alternatives, even for a lowdollarvalue program.

You’ve got homework and reading lists ahead, but as the able
science, technology, engineering and mathematics person
who is a newbie to the world of DoD IT intensive program
management, where do you start? It would be hard to begin
with a short list. But to bootstrap your thinking across such
diverse topics as architecting, cybersecurity and recent his
torical developments in the cloud consider, respectively:
Barry Boehm, Peter Kind and Richard Turner’s article “Risky
Business: 7 Myths about Software Engineering that Impact
Defense Acquisitions,” in the MayJune 2002 issue of the De
fense Acquisition University’s Program Manager; Kim Zetter’s
“An Unprecedented Look at StuxNet, the World’s First Digital
Weapon” published in Wired on Nov. 3, 2014; and, if you get
a chance, Gartner Vice President and analyst Doug Laney’s
Gartner Symposium presentation “55 Examples of Big Data
Case Studies in 55 Minutes.” Get to know the nuances of the
following terms via a little primary schoolstyle vocabulary
drill: sevenlayer OSI model, virtualization, datacenter, Inter
net Protocol Version 6, IaaS/PaaS/SaaS, the internet of things
(IoT), netcentricity, asymmetrickey, Big Data and cloud com
puting. Most of all, do a little refresher “Hello World” pro
gramming in code to familiarize yourself with the software
creation process. May I suggest Brian Kernighan and Dennis
M. Ritchie’s book The C Programming Language as very good
exercise for the new program manager or systems engineer?

In closing, I also mention that the Defense Acquisition Uni
versity itself has some very helpful short course modules to
help with initially getting up to speed. Yes, you may be the
newbie in the room, but at the same time realize you also bring
a very valuable outsider’s viewpoint and humility to this world.
The DoD really needs this perspective given the 26 percent
“success ratio” in software intensive systems, with the DoD
managing only 18 percent (and 0 percent once above a $10
million levelofeffort) as cited upfront in the BoehmKind
Turner article.

The author can be contacted at oliver.easterday@us.af.mil.

